ECON 8040 - TA9

Michael Kotrous

University of Georgia

October 20, 2023

Introduction

- ★ PS5 due today (Friday, October 20)
- * PS6 due Thursday, October 26
- ★ PS3 and PS4 grades posted to eLC

Ag, manufacturing, services share model

- a) Set up similar to PS4, Problem 2
- Pull data for ag, manufacturing, and services consumption in U.S.
- c) "Calibrate" the parameters of the model
- d) Interpret \bar{c}_a and \bar{c}_s parameters
- e) Compare expenditure shares path predicted by model against actual data

Define competitive equilibrium for static model of continuous labor supply

- ⋆ State all equilibrium objects
- * Define household problem
 - → Labor and leisure must add up to time endowment
- ⋆ Define firm problem
- * Three markets clear

Solve static model of continuous labor supply, assuming

$$u(c,\ell) = \frac{1}{1-\sigma} \left[\left(c^{\phi} \ell^{1-\phi} \right)^{1-\sigma} - 1 \right] \qquad F(K,N) = AK^{\alpha} N^{1-\alpha}$$

- \star Assume $\phi \in (0,1)$, $\sigma \geq 1$
- \star You may assume $\bar{k}=1$ (but you don't have to)
- \star What is k^* ?
- * Rewrite HH problem in terms of two choices: c, ℓ
- \star Write MRS of c. ℓ
- ★ Use budget constraint, firm FOCs to write equation with one unknown: ℓ*
- \star Use ℓ^* to solve other allocations, prices

Solve static model of continuous labor supply, assuming

$$u(c,\ell) = c - \frac{1}{1 + \frac{1}{\varepsilon}} (1 - \ell)^{1 + \frac{1}{\varepsilon}}$$
 $F(K,N) = AK^{\alpha}N^{1-\alpha}$

- \star Assume $\varepsilon > 0$
- * Write HH problem with two choices: c, h (or c, ℓ)
- \star Use FOCs to write w in terms of h
- * Use firm's FOC to write equation with one unknown: h^*
- \star Use h^* to find other allocations, prices

- Write the Bellman equation
- Solve the Bellman using the provided guess and following the lecture notes
 - \rightarrow Solve policy function k' and value function v(k)
- c) Use the policy function for k' to find $\frac{k_{t+1}}{k_t}$ and $\frac{c_{t+1}}{c_t}$

- a) Write down FOC for n using F(k, k') Write Bellman equation using F(k, k')
- b) Assume full depreciation ($\delta = 1$) Find FOC for k' using provided guess: $V(k) = A + B \log(k)$
- c) Write n in terms of parameters and B
- d) Replace k' and n in guess of V(k) to solve B
- e) Solve for policy functions n, k', and c as function of state k

- a) Write planning problem $w(k_0, h_0)$ (k_0, h_0 is given initial capital stock)
- b) Write the planning problem recursively
- c) Assume full depreciation ($\delta=1$) and use guess-and-verify to solve:
 - $\rightarrow V(k,h)$
 - $\rightarrow k'(k,h)$
 - $\rightarrow h'(k,h)$

- Rewrite the problem so $\{k_{t+1}\}_{t=0}^{\infty}$ is only choice variable
- b) Write the problem recursively using two equations
 - $\rightarrow v(k, \theta_I)$
 - $\rightarrow v(k, \theta_H)$
 - \rightarrow You know how state θ_t evolves
- c) Solve the Bellman equations using guess-and-verify
- d) Find policy functions $g(k, \theta_I)$ and $g(k, \theta_H)$

roduction PS5 Overview PS6 Overview PS3 Grades PS4 Grades

Problem 1

- a) Want to show result for any size distribution
- c) With CRS technology, firms earn zero profit in equilibrium

Michael Kotrous (UGA) ECON 8040 October 20, 2023

11 / 15

Problems 2,4,5

Penn World Table data exercises

- * Cross-country differences in income, capital, productivity
- * Cross-country differences in income, savings rates, productivity
- * Solow model and "catch-up" growth
 - → Assume U.S. is in steady state
 - \rightarrow Assume "your country" has same α , A, δ , s
 - \rightarrow "your country" converges to k_{US}

Static model of indivisible labor supply (i.e., h = 0 or h = 1)

- a) Define competitive equilibrium
 - \rightarrow Use i superscript for HH allocations (no representative HH)
 - \rightarrow HH makes allocation k^{i*} . Optimal choice is $k^{i*} = \bar{k}^i$
 - \rightarrow HH chooses h^{i*} , not ℓ^{i*}
 - \rightarrow WLOG normalize $p^* = 1$
 - → Firm has CRS technology
 - Representative firm
 - Zero profit in equilibrium

Static model of expenditure shares agriculture, manufacturing, goods

a) Find expenditure shares for each good, i.e find $\frac{p_i c_i}{v}$

$$\max_{\{c_a, c_m, c_s\}} \phi_a \log(c_a - \bar{c}_a) + \phi_m \log(c_m) + \phi_s \log(c_s + \bar{c}_s)$$

subject to $p_a c_a + p_m c_m + p_a c_a = v$; λ Sketch:

- \rightarrow Divide FOC wrt c_a by FOC wrt c_m
- \rightarrow Divide FOC wrt c_s by FOC wrt c_s
- \mapsto Write $\frac{p_a c_a}{y}$, $\frac{p_s c_s}{y}$ in terms of parameters, $\frac{p_m c_m}{y}$ \mapsto Divide budget constraint by y; replace $\frac{p_a c_a}{y}$, $\frac{p_s c_s}{y}$
- \rightarrow Solve for $\frac{p_m c_m}{v}$ in terms of parameters
- \rightarrow Replace $\frac{p_m c_m}{v}$ in equations in step 3 to finish

Two-period sequential market economy

The correct endowments are:

$$(e_0^1, e_1^1) = (1, 0)$$

$$(e_0^2, e_1^2) = (0, 1)$$

See Fall 2021 Midterm Solutions document for answer