ECON 8040 - TA8

Michael Kotrous

University of Georgia

October 13, 2023

Today's Session

Introduction

- * Midterm bonus points assigned
- ★ PS4 due today (Friday, October 13) at 11:59pm
 - → PS4, Problem 3 is optional
- * PS5 extended to Friday, October 20
- ⋆ PS6 due Friday, October 27

Static model of indivisible labor supply (i.e., h = 0 or h = 1)

- a) Define competitive equilibrium
 - \rightarrowtail Write household problem for all $i \in [0,1]$
 - \rightarrowtail Write firm problem
 - → 3 market-clearing conditions
 - ullet integrate over allocations by households on [0,1] to get aggregates
- b) In equilibrium, households are *indifferent* between working full-time and not working at all
 - Use this condition to write down an equation. (Think carefully about how much workers/non-workers consume.)
 - 2 Solve for $\frac{r^*}{w^*}$ (it equals a constant)
 - Write down firm's FOCs
 - **3** Combine expression from steps 2 and 3 to write an equation that has equilibrium labor supply n^* as its only variable and solve.

Static model of expenditure shares agriculture, manufacturing, goods

- a) Find expenditure shares for each good, i.e find $\frac{p_i c_i}{v}$
 - 1) Write down utility maximization subject to budget constraint.
 - 2) FOCs with respect to decision variables. This gives you three equations with three unknowns.
 - 3) Solve for $\frac{p_i c_i}{v}$ for $i \in \{a, m, s\}$.
- b) How do expenditures shares change as you increase y?
 - 1) Check sign of $\frac{\partial \left(\frac{c_i p_i}{y}\right)}{\partial y}$ for $i \in \{a, m, s\}$
 - 2) Sanity check: Do your results match your intuition about economic development?

a) (Optional) Finite horizon planning problem

- → Write Euler equation
- >>> Rearrange so that left-hand side of equation is

$$z_{t+1} \equiv \frac{k_{t+2}}{Ak_{t+1}^{\alpha}}$$

and $z_t \equiv \frac{k_{t+1}}{Ak_t^{\alpha}}$ is on the right-hand side

- \rightarrow Solve for z_t in terms of parameters and z_{t+1} .
- \rightarrowtail Start in final period and work backward (i.e., $k_{T+1}=0 \Rightarrow z_T=0$)
 - Why is this the case?
- \rightarrow Notice pattern and write equation for z_t
- b) Evaluate limits

Two-period sequential market economy

The correct endowments are:

$$(e_0^1,e_1^1)=(1,0)$$

$$(e_0^2,e_1^2)=(0,1)$$

Two-period sequential market economy

- a) Define SMCE
 - >>> Household has separate budget constraints for two periods
 - \rightarrow Be careful with η when defining market clearing conditions
- b) Find equilibrium interest rate i^* as function of η
 - \rightarrow FOCs wrt c_0^k , c_1^k , a^k
- c) Discuss why interest rate changes as it does when η increases. Evaluate

$$\frac{\partial i^*}{\partial \eta}$$

Ag, manufacturing, services share model

- a) Set up similar to PS4, Problem 2
- b) Pull data for ag, manufacturing, and services consumption in U.S.
- c) "Calibrate" the parameters of the model
- Interpret \bar{c}_a and \bar{c}_s parameters
- e) Compare expenditure shares path predicted by model against actual data

Define competitive equilibrium for static model of continuous labor supply

- ⋆ State all equilibrium objects
- * Define household problem
 - → Labor and leisure must add up to time endowment
- ⋆ Define firm problem
- * Three markets clear

Solve static model of continuous labor supply, assuming

$$u(c,\ell) = \frac{1}{1-\sigma} \left[\left(c^{\phi} \ell^{1-\phi} \right)^{1-\sigma} - 1 \right] \qquad F(K,N) = AK^{\alpha} N^{1-\alpha}$$

PS5 Overview

- \star Assume $\phi \in (0,1)$, $\sigma \geq 1$
- \star You may assume $\bar{k}=1$ (but you don't have to)
- * What is k^* ?
- * Rewrite HH problem in terms of two choices: c, ℓ
- \star Write MRS of c, ℓ
- \star Use budget constraint, firm FOCs to write equation with one unknown: ℓ^*
- \star Use ℓ^* to solve other allocations, prices

Solve static model of continuous labor supply, assuming

$$u(c,\ell) = c - \frac{1}{1 + \frac{1}{\varepsilon}} (1 - \ell)^{1 + \frac{1}{\varepsilon}}$$
 $F(K,N) = AK^{\alpha}N^{1-\alpha}$

PS5 Overview

- * Assume $\varepsilon > 0$
- * Write HH problem with two choices: c, h (or c, ℓ)
- ★ Use FOCs to write w in terms of h
- * Use firm's FOC to write equation with one unknown: h^*
- * Use h^* to find other allocations, prices

- (a) Write the Bellman equation
- (b) Solve the Bellman using the provided guess and following the lecture notes
 - \rightarrow Solve policy function k' and value function v(k)
- (c) Use the policy function for k' to find $\frac{k_{t+1}}{k_t}$ and $\frac{c_{t+1}}{c_t}$

- (a) Write down FOC for n using F(k, k')Write Bellman equation using F(k, k')
- (b) Assume full depreciation ($\delta = 1$) Find FOC for k' using provided guess: $V(k) = A + B \log(k)$
- (c) Write *n* in terms of parameters and *B*
- (d) Replace k' and n in guess of V(k) to solve B
- (e) Solve for policy functions n, k', and c as function of state k

- Write planning problem $w(k_0, h_0)$ (k_0, h_0 is given initial capital stock)
- Write the planning problem recursively
- (c) Assume full depreciation ($\delta = 1$) and use guess-and-verify to solve:
 - $\rightarrow V(k,h)$
 - $\rightarrow k'(k,h)$
 - $\rightarrow h'(k,h)$

- Rewrite the problem so $\{k_{t+1}\}_{t=0}^{\infty}$ is only choice variable
- (b) Write the problem recursively using two equations
 - $\rightarrow v(k, \theta_I)$
 - $\rightarrow v(k, \theta_H)$
 - \rightarrow You know how state θ_t evolves
- (c) Solve the Bellman equations using guess-and-verify
- (d) Find policy functions $g(k, \theta_I)$ and $g(k, \theta_H)$

Matlab Installation

- * Install Matlab
 - → Free through UGA
 - → UGA IT installation guide
 - >> Value function iteration, computational exercises require Matlab
 - → ECON 8050 also requires Matlab
 - → Matlab coding usually tested on macro preliminary exam