ECON 8040 - TA6

Michael Kotrous

University of Georgia

September 29, 2023

Today's Session

- Midterm Grades
- * Problem Set 4 Overview
 - → Due Friday, Oct. 6 at 11:59p.m.

3/13

Table 1: Midterm Exam – Summary Statistics

Mean	53
Max	79
75th Percentile	62.75
Median	52.5
25th Percentile	40.25
Min	31

Surprise!

Midterm retake for bonus points

- ★ Due Friday, Oct. 6 at 11:59p.m.
- ★ Those who redo midterm problems satisfactorily will receive 15 points added to their midterm score

General Thoughts

- * Read description of model carefully!
- * Models differed from HW and lecture notes
 - >>> Thus, correct answers on exam don't match HW problems
 - >-> When studying lecture notes / HW, learn solution methods, not just results

a) Define ADCE

>>> State all equilibrium objects first

$$\{c_t^1, c_t^2, p_t\}_{t=0}^{\infty}$$

 \rightarrow Given prices, household *i* chooses only *own* consumption

$$\max_{\substack{t \in \{c_t^i\}_{t=0}^{\infty}}} \mathcal{U}(c_t) \qquad \max_{\substack{\{c_t^i\}_{t=0}^{\infty}}} \mathcal{U}(c_t)$$

- → Household has only one budget constraint
- → Market clears every period

- b) Define Pareto efficient allocation
 - → Define "feasible"
 - → Do not define a Planner's Problem
- c) Prove first welfare theorem
 - \rightarrow Proof by contradiction (i.e., show $CE \land \neg PE$ is wrong)
 - → Follow sketch in lecture notes, Proposition 2 on page 7 of "Introduction to Competitive Equilibria and Welfare Theorems"

- d) Define Planner Problem
 - >>> Planner does not face budget constraint
- e,f,g) Plug in the correct endowments!

$$e_t^1 = \begin{cases} 2 & \text{if } t = 0, 2, 4, \dots \\ 0 & \text{if } t = 1, 3, 5, \dots \end{cases}$$

$$e_t^2 = \begin{cases} 0 & \text{if } t = 0, 2, 4, \dots \\ 1 & \text{if } t = 1, 3, 5, \dots \end{cases}$$

- g) Find equilibrium prices
 - >>> Don't write down ADCE, use Negishi Method

- a) Detrend the aggregate feasibility constraint
 - >>> Replace values in aggregate feasibility equation
 - \rightarrow Divide both side by N' = (1 + n)N
- b) Use the equation from a)
 - \rightarrow Impose $k^* \equiv k' = k$ and do algebra
 - \rightarrow Hint: $sy \neq \delta k$ in this model
- c) Plot evolution of aggregate output Y_t over time
 - \rightarrow What goes on y-axis?
 - \rightarrow What goes on x-axis?

- a) Define competitive equilibrium
 - \rightarrow Write household problem for all $i \in [0,1]$
 - → Write firm problem
 - → 3 market-clearing conditions
 - integrate over allocations by households on [0,1] to get aggregates
- In equilibrium, households are indifferent between working full-time and not working at all
 - Use this condition to write down an equation. (Think carefully about how much workers/non-workers consume.)
 - 2 Solve for $\frac{r^*}{w^*}$ (it equals a constant)
 - Write down firm's FOCs
 - **①** Combine expression from steps 2 and 3 to write an equation that has equilibrium labor supply n^* as its only variable and solve.

- a) Find expenditure shares for each good, i.e find $\frac{p_i c_i}{y}$
 - 1) Write down utility maximization subject to budget constraint.
 - FOCs with respect to decision variables. This gives you three equations with three unknowns.
 - 3) Solve for $\frac{p_i c_i}{y}$ for $i \in \{a, m, s\}$.
- b) How do expenditures shares change as you increase *y*?
 - 1) Check sign of $\frac{\partial \left(\frac{c_i p_i}{y}\right)}{\partial y}$ for $i \in \{a, m, s\}$
 - 2) Sanity check: Do your results match your intuition about economic development?

- a) Finite horizon planning problem
 - → Write Euler equation
 - \rightarrowtail Rearrange so that left-hand side of equation is

$$z_{t+1} \equiv \frac{k_{t+2}}{Ak_{t+1}^{\alpha}}$$

and $z_t \equiv \frac{k_{t+1}}{Ak_r^{\alpha}}$ is on the right-hand side

- \rightarrow Solve for z_t in terms of parameters and z_{t+1} .
- \rightarrow Start in final period and work backward (i.e., $k_{T+1} = 0 \Rightarrow z_T = 0$)
 - Why is this the case?
- \rightarrow Notice pattern and write equation for z_t
- b) Evaluate limits

- a) Define SMCE
 - >>> Household has separate budget constraints for two periods
 - \rightarrow Be careful with η when defining market clearing conditions
- b) Find equilibrium interest rate i^* as function of η
 - \rightarrow FOCs wrt c_0^k , c_1^k , a^k
- c) Discuss why interest rate changes as it does when η increases. Evaluate

$$\frac{\partial i^*}{\partial n}$$