ECON 8040 - Midterm Exam Prep

Michael Kotrous

University of Georgia

September 19, 2023

Midterm Exam

Introduction •000

- * Lecture Notes
 - → Competitive Equilibrium & Welfare Theorems
 - \mapsto Economic Growth (Solow Model)
- * Problem Sets 1, 2 & 3

Competitive Equilibrium

- * Carefully define all equilibrium objects
 - → Allocations and prices
 - → Clarify what agents take as given, what are their choices, and what their objectives are
- * Solve for all equilibrium objects!
 - >>> Don't forget prices when using Neghishi Method!
 - >-> Solve for all states in stochastic economy.
- ★ Keep tidy notation to track states in stochastic economy
 - \rightarrow e.g., $c_t^1(s^t)$, not c_t^1
 - \rightarrow e.g., $p_t(s_1)$, not p_t

Welfare Theorems

Introduction

- * First Welfare Theorem
 - → Pareto Efficiency (PE)
- * Second Welfare Theorem
 - → Definition of transfers (only occurs once, not every period)
 - → Planner's Problem (PP)
 - >> Negishi Method for solving CE
- * Don't confuse definitions of PE and PP!

Growth Models

Introduction

- * Production functions
- * Law of motion of capital
- * Steady state and its determinants

5 / 27

- ★ "if and only if" requires two proofs!
- $\star P \Leftrightarrow Q$
 - 1. $P \Rightarrow Q$
 - i. Assume P
 - ii. Need to show (NTS) Q holds
 - 2. $Q \Rightarrow P$
 - i. Assume Q
 - ii. NTS P holds

Proving "If and Only If"

- ★ E.g., ADCE ⇔ SMCE
 - 1) $SM \Rightarrow AD$
 - i. Assume SMCE $\{c_t^1, c_t^2, a_{t+1}^1, a_{t+1}^2\}_{t=0}^{\infty}$, $\{r_{t+1}\}_{t=0}^{\infty}$, and $-\bar{A}$
 - ii. NTS there exists price sequence $\{p_t\}_{t=0}^{\infty}$ s.t. HH makes same allocation in ADCE.
 - iii. Use interest rate r_{t+1} to define AD prices p_t
 - iv. Use period budget constraints, and borrowing limit to write present value budget constraint
 - Conclude HH in AD faces same problem as in SM, so make same choices.
 - 2) $AD \Rightarrow SM$
 - i. Assume ADCE $\{c_t^1, c_t^2, p_t\}_{t=0}^{\infty}$
 - ii. NTS \exists interest rate r_{t+1} , asset holding a_{t+1}^i , borrowing limit $-\bar{A}$
 - iii. Define interest rates in terms of AD prices p_t
 - iv. Write equation for a_{t+1} in terms of prices, consumption, endowments
 - v. Show $\exists \bar{A} > 0$ s.t. $a_{t+1} > -\bar{A}$ for all t

Proof by Contradiction

- \star Logically, $P \Rightarrow Q$ is negated by $P \land \neg Q$
- \star Proof by contradiction shows $P\Rightarrow Q$ by negating $P\wedge \neg Q$
 - \rightarrow Do not try to show $\neg P \land Q!$
 - \rightarrow $P \Rightarrow Q$, yet Q could happen in absence of P
- \star E.g., show CE allocation is PE (i.e., CE ⇒ PE)
- ★ Easier to negate statement "Allocation is $CE \land \neg PE$ "
- ⋆ Sketch
 - i. Assume allocation is CE and not PE (i.e., $CE \land \neg PE$)
 - ii. Use definition of PE to show alternative allocation that is Pareto improving cannot exist
 - iii. Conclude $CE \land \neg PE$ does not hold, thus $CE \Rightarrow PE$
 - → See sketch of proof of Proposition 2 on page 7 of "Introduction to Competitive Equilibria and Welfare Theorems" lecture notes

Prove properties of CRRA utility

$$U(c) = \frac{c^{1-\sigma} - 1}{1-\sigma}$$

a) Let $f(\sigma) = c^{1-\sigma} - 1$, $g(\sigma) = 1 - \sigma$. Both are differentiable and $\lim_{\sigma \to 1} \frac{f(\sigma)}{\sigma(\sigma)} = \frac{0}{0}$. By l'Hôspital's rule,

$$\lim_{\sigma \to 1} U(c) = \lim_{\sigma \to 1} \frac{f'(\sigma)}{g'(\sigma)} = \log c$$

Plug derivatives into definition to show

$$-\frac{U''(c)}{U'(c)}c = \sigma$$

c) Plug into definition

$$\mathsf{IES} \equiv -\frac{\%\Delta c}{\%\Delta U'(c)} = -\frac{dc}{c} \left/ \frac{dU'(c)}{U'(c)} = -\frac{U'(c)}{c\left(\frac{dU'(c)}{dc}\right)} = -\frac{U'(c)}{c \times U''(c)}\right$$

- \rightarrow Sensitivity of intertemporal substitution wrt 1% change in MRS
- d) Use U'(c), U''(c) to show Inada conditions
 - i. strictly increasing
 - ii. strictly concave
 - iii. $\lim_{c\to 0} U'(c) = +\infty$
 - iv. $\lim_{c\to +\infty} U'(c) = 0$

e) Show MRS is invariant to scaling of consumption.

$$\max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma} - 1}{1-\sigma}$$

subject to
$$\sum_{t=0}^{\infty} p_t c_t \leq \sum_{t=0}^{\infty} p_t e_t$$
; γ FOCs wrt c_{t+s} , c_t

$$\mapsto \beta^{t+s} c_{t+s}^{-\sigma} = \gamma p_{t+s}$$

$$\mapsto \beta^t c_t^{-\sigma} = \gamma p_t$$
For $\lambda > 0$.

$$\mathit{MRS}(c_{t+s}, c_t) = \beta^s \left(\frac{c_{t+s}}{c_t} \right)^{-\sigma} = \mathit{MRS}(\lambda c_{t+s}, \lambda c_t)$$

Problem 3, part e

- f) Given $\{\bar{c}_t\}_{t=0}^{\infty}$ is CE allocation when income equals y. Need to show allocation $\{\widetilde{c}_t\}_{t=0}^{\infty}=\{\lambda\bar{c}_t\}_{t=0}^{\infty}$ when income $\widetilde{y}=\lambda\bar{y}$
 - → Affordable using the budget constraint
 - >-> Optimal using homotheticity of CRRA utility (i.e., MRS invariant to scaling of consumption)

Problem Set 3

Lecture Note Questions – Problem 4

Exercises with following Arrow-Debreu economy: ADCE is allocation $\{c_t^1, c_t^2\}_{t=0}^{\infty}$ and prices $\{p_t\}_{t=0}^{\infty}$ such that A. Given prices, household i = 1, 2 makes allocation that solves

$$\max_{\{c_t^i\}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t \log c_t^i$$

s.t.
$$\sum_{t=0}^{\infty} p_t c_t^i = \sum_{t=0}^{\infty} p_t e_t^i$$

B. For $t = 0, 1, 2, \ldots$, market clears

$$c_t^1 + c_t^2 = e_t^1 + e_t^2$$

where $e_t^1 = (2, 0, 2, 0, \dots)$ and $e_t^2 = (0, 2, 0, 2, \dots)$

- a) Show prices are *not* constant. E.g., prove by contradiction
 - \rightarrow Suppose $p_t = p$ for t = 0, 1, 2, ...

$$\max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \log(c_t^i)$$

s.t.
$$\sum_{t=0}^{\infty} pc_t^i = \sum_{t=0}^{\infty} pe_t^i; \lambda$$

- \mapsto By FOCs, $\lambda = \frac{\beta^t}{c_t^i} = \frac{\beta^{t+1}}{c_{t+1}^i} \Leftrightarrow c_t^i = \beta c_{t+1}^i = \beta^t c_0^i$
- → By budget constraint.

$$\sum_{t=0}^{\infty}eta^t
ho c_0^i = rac{
ho c_0^i}{(1-eta)} = \sum_{t=0}^{\infty}
ho e_t^i \Leftrightarrow c_0^i = (1-eta) \sum_{t=0}^{\infty} e_t^i$$

>>> Contradiction: HH cannot consume infinite resources in first period

b) Solve ADCE

Derive Euler equation using household i's first-order conditions

$$c_{t+1}^i = \beta \frac{p_t}{p_{t+1}} c_t^i$$

 \rightarrow Write c_t^i in terms of c_0^i using Euler

$$c_t^i = \beta \frac{p_{t-1}}{p_t} c_{t-1}^i = \beta \frac{p_{t-1}}{p_t} \times \beta \frac{p_{t-2}}{p_{t-1}} c_{t-2}^i = \dots = \beta^t \frac{p_0}{p_t} c_0^i$$

 \rightarrow Normalize $p_0 = 1$. Write c_0^i in terms of discount factor, prices, and endowments using budget constraint

$$\sum_{t=0}^{\infty} p_t c_t^i = \sum_{t=0}^{\infty} p_t \beta^t \frac{p_0}{p_t} c_0^i = c_0^i \sum_{t=0}^{\infty} \beta^t = \sum_{t=0}^{\infty} p_t e_t^i$$

$$\Rightarrow c_t^i = (1 - \beta) \frac{\beta^t}{p_t} \sum_{t=0}^{\infty} p_t e_t^i$$

b) Solve ADCE

 \rightarrow Solve p_t using the market-clearing condition

$$c_t^1 + c_t^2 = (1 - \beta) \frac{\beta^t}{p_t} \sum_{t=0}^{\infty} p_t (e_t^1 + e_t^2)$$
 $2 = 2(1 - \beta) \frac{\beta^t}{p_t} \sum_{t=0}^{\infty} p_t$
 $p_t = \beta^t$

 \rightarrow Solve allocations \hat{c}_t^1 , \hat{c}_t^2 by plugging p_t , endowments in expression for c_{t}^{i} (be careful with sums!)

$$\hat{c}_t^i = (1 - \beta) \sum_{t=0}^{\infty} \beta^t e_t^i$$

Michael Kotrous (UGA)

- ② Prove equivalence of ADCE and SMCE Exercise (optional): Show $1 + r_{t+1} = \frac{1}{\beta}$, $c_t^1 = \frac{2}{1-\beta}$, $c_t^2 = \frac{2\beta}{1-\beta}$ in SMCE with same preferences, endowments as ADCE in Definition 3.
 - SMCE is allocation $\{c_t^1, a_{t+1}^1, c_t^2, a_{t+1}^2\}_{t=0}^{\infty}$ and interest rate $\{r_{t+1}\}_{t=0}^{\infty}$ such that
 - A. Given prices, household i = 1, 2 makes allocation that solves

$$\max_{\{c_t^i\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \log c_t^i$$

s.t.
$$c_t^i + a_{t+1}^i = e_t^i + (1 + r_t)a_t^i$$

- B. For $t = 0, 1, 2, \ldots$, markets clear
 - i. Consumption good: $c_t^1 + c_t^2 = e_t^1 + e_t^2$
 - ii. Securities: $a_{t+1}^1 + a_{t+1}^2 = 0$

1 Prove First Welfare Theorem: Let $\{c_t^1, c_t^2\}_{t=0}^{\infty}$ be CE. Then it is Pareto efficient.

Suppose not. If CE allocation is not PE, then \exists allocation $\{\hat{c}_t^1, \hat{c}_t^2\}_{t=0}^{\infty}$ such that

- i. $\hat{c}_t^1 + \hat{c}_t^2 = 2$ for t = 0, 1, 2, ...
- ii. $\sum_{t=0}^{\infty} \beta^t \log(\hat{c}_t^1) > \sum_{t=0}^{\infty} \beta^t \log(c_t^1)$ iii. $\sum_{t=0}^{\infty} \beta^t \log(\hat{c}_t^2) = \sum_{t=0}^{\infty} \beta^t \log(c_t^2)$

See sketch of proof of Proposition 2 on page 7 of "Introduction to Competitive Equilibria and Welfare Theorems' lecture notes

- Allocation is PE if and only if that allocation solves PP
 - >> Variation in scores explained by setting up proof correctly
 - \rightarrow Show $PE \Rightarrow PP$
 - Assume PE allocation $\{c_t^1, c_t^2\}_{t=0}^{\infty}$
 - NTS $\exists \alpha$ s.t. solution to PP is $\{c_t^1, c_t^2\}_{t=0}^{\infty}$
 - \rightarrow Show $PP \Rightarrow PF$
 - Assume Planner chooses $\{c_t^1, c_t^2\}_{t=0}^{\infty}$ for some weight α
 - Suppose Planner allocation is not PE.
 - NTS $PP \land \neg PE$ is not true. Thus $PP \Rightarrow PE$

- **5** Find α corresponding to ADCE in lecture notes.
 - \rightarrowtail Use model economy from Question 1 in lecture notes
 - \rightarrow Write down Planner's allocations $c_t^1(\alpha), c_t^2(\alpha)$.
 - \rightarrow Find α such that $c_t^1(\alpha)=(c_t^1)_{CE}$, $c_t^2(\alpha)=(c_t^2)_{CE}$
- Negishi Method
 - a) Find allocations as function of α (like you did in Q5). Write Lagrange multiplier $\pi_t(\alpha)$, too
 - b) Write transfer functions using $\pi_t(\alpha)$, $c_t^i(\alpha)$, e_t^i
 - c) Show $t^i(\alpha)$ is HD1 and sums to zero
 - Only ratio of weights affects allocation
 - Transfers must sum to zero for feasibility to hold
 - d) Find α_{CE} such that $t^1(\alpha_{CE}) = t^2(\alpha_{CE}) = 0$.
 - Equilibrium allocations $c_t^i = c_t^i(\alpha_{CE})$
 - Equilibrium prices $p_t = \pi_t(\alpha_{CE})$

- Stochastic ADCE
 - a) Prove First Welfare Theorem
 - Show by contradiction as before
 - Be careful with s^t notation, but logic of proof is same
 - b) Solve ADCE when $\pi(1) = \pi(2) = 1/2$
 - Carefully define ADCE for two-state economy
 - Solving much the same: use Euler, budget constraint, MCC, and MRS
 - Write all equilibrium allocations and prices
- Asset Prices
 - \rightarrow Write prices like $q_t(s^t, \eta_j)$, $q_{t+1}((s^t, \eta_j = 2), \eta_j = 1)$ to answer question
 - \rightarrow Think of how many assets (and which ones) need to be bought in period t and t+1
- See notes above about showing SMCE, ADCE equivalence

a) Define ADCE

- \mapsto Each consumer i=1,2 maximizes *expected utility* s.t. 1 budget constraint
- → 1 time period; 3 possible state of endowments
- → Thus 3 MCCs
- b) Define Pareto efficient allocation
 - → Feasible
 - ightarrow Cannot increase one agent's utility without decreasing another's utility
 - → Do not define Planner's Problem!
- c) Show ADCE allocation is PE
 - → How should we prove this?

d) Solve Stochastic ADCE

- \rightarrow WLOG normalize $p(s_1) = 1$
- \rightarrow FOCs wrt 3 choice variables for household i
- >>> Replace prices on LHS of budget constraint
- \rightarrow Write $c^i(s_1)$ in terms of prices, endowments
- \rightarrow Use FOCs to write $c^i(s_2), c^i(s_3)$ in terms of prices, endowments
- \rightarrow Plug $c^{i}(s_{i})$ for i = 1, 2, j = 1, 2, 3 into MCCs to solve prices
 - You'll have 3 equations for 2 unknowns, but solution is unique
- \rightarrow Solve allocations by replacing prices into equations for $c^i(s_i)$ you derived earlier

Question 1

- a) Suppose there are j firms in the economy that each hold α_i share of aggregate capital K and aggregate labor L. Use CRS property to show $\sum_{i} F(K_i, L_j) = F(K, L)$
- b)

Capital Share :=
$$\frac{rK}{Y}$$

Labor Share := $\frac{wL}{Y}$

Question 1

c)
$$\pi = F(K, L) - wL - rK$$

- → Hint: Start with Cobb-Douglas p.f. to get the answer. Then prove it more generally for any CRS p.f.
- \rightarrow Sketch
 - Take total derivative of F(K, L)
 - Fix dK, dL to correspond to doubling of K, L
 - Use CRS property to conclude what this implies about dF
 - Replace partial derivatives with factor prices
 - Calculate profit

Questions 2–4

* Exercises with Penn World Tables data

