ECON 8040 - TA Session 3

Michael Kotrous

University of Georgia

September 8, 2023

Today's Session

- * Homework 2 submitted
- * Homework 1 grades

3/20

Problem 1, parts a,b,c

★ Sanity check: Should sum close to 1 (GDP $\approx C + I + G$ for NX small)

Problem 1, part c

 \star Alternative calculation: Gov't Share $\equiv \frac{\text{Gov't Total Exp.}}{\text{GDP}}$

Problem 1, part d

* Recent papers on declining labor share: "Superstar Firms" (Autor et. al, 2020); "Rise of Market Power" (De Loecker, Eeckhout, and Unger, 2020)

Problem 1, part e

Problem 1, parts f,g

Report trends and residuals for data series:

- Generate log(x)
- 2 Fit linear trend log(x) that minimizes sum of squared errors
- **3** Compute "Deviations" / "residuals": $\hat{e} = \log(x) \widehat{\log(x)}$

How I did it in Matlab:

- Compute log(x)
- Matlab's detrend function fits line and returns residuals ê
- 3 Trend $\widehat{\log(x)} = \log(x) \hat{e}$

Problem 2, part a

Prove properties of CRRA utility

$$U(c) = \frac{c^{1-\sigma} - 1}{1-\sigma}$$

a) Let $f(\sigma) = c^{1-\sigma} - 1$, $g(\sigma) = 1 - \sigma$. Both are differentiable and $\lim_{\sigma \to 1} \frac{f(\sigma)}{g(\sigma)} = \frac{0}{0}$. By l'Hôspital's rule,

$$\lim_{\sigma \to 1} U(c) = \lim_{\sigma \to 1} \frac{f'(\sigma)}{g'(\sigma)} = \log c$$

b) Plug derivatives into definition to show

$$-\frac{U''(c)}{U'(c)}c = \sigma$$

c) Plug into definition

$$\mathsf{IES} \equiv -\frac{\%\Delta c}{\%\Delta U'(c)} = -\frac{dc}{c} \left/ \frac{dU'(c)}{U'(c)} = -\frac{U'(c)}{c\left(\frac{dU'(c)}{dc}\right)} = -\frac{U'(c)}{c \times U''(c)}\right$$

- >>> Sensitivity of intertemporal substitution wrt 1% change in MRS
- d) Use U'(c), U''(c) to show Inada conditions
 - i. strictly increasing
 - ii. strictly concave
 - iii. $\lim_{c\to 0} U'(c) = +\infty$
 - iv. $\lim_{c\to +\infty} U'(c) = 0$

e) Show MRS is invariant to scaling of consumption.

$$\max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma} - 1}{1-\sigma}$$

subject to
$$\sum_{t=0}^{\infty} p_t c_t \leq \sum_{t=0}^{\infty} p_t e_t$$
; γ FOCs wrt c_{t+s} , c_t

$$\mapsto \beta^{t+s} c_{t+s}^{-\sigma} = \gamma p_{t+s}$$

$$\mapsto \beta^t c_t^{-\sigma} = \gamma p_t$$
For $\lambda > 0$.

$$MRS(c_{t+s}, c_t) = \beta^s \left(\frac{c_{t+s}}{c_t}\right)^{-\sigma} = MRS(\lambda c_{t+s}, \lambda c_t)$$

Problem 3, part e

- f) Given $\{\bar{c}_t\}_{t=0}^{\infty}$ is CE allocation when income equals y. Need to show allocation $\{\tilde{c}_t\}_{t=0}^{\infty}=\{\lambda\bar{c}_t\}_{t=0}^{\infty}$ when income $\widetilde{y}=\lambda\bar{y}$
 - >> Affordable using the budget constraint
 - → Optimal using homotheticity of CRRA utility (i.e., MRS invariant to scaling of consumption)

First three questions from the lecture notes

- Arrow-Debreu CE is allocation $\{c_t^1,c_t^2\}_{t=0}^\infty$ and prices $\{p_t\}_{t=0}^\infty$ such that
 - A. Given prices, household i = 1, 2 makes allocation that solves

$$\max_{\{c_t^i\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \log c_t^i$$

s.t.
$$\sum_{t=0}^{\infty} p_t c_t^i = \sum_{t=0}^{\infty} p_t e_t^i$$

B. For $t = 0, 1, 2, \ldots$, market clears

$$c_t^1 + c_t^2 = e_t^1 + e_t^2$$

where
$$e_t^1 = (2, 0, 2, 0, \dots)$$
 and $e_t^2 = (0, 2, 0, 2, \dots)$

First three questions from the lecture notes

- a) Show prices are not constant. E.g., prove by contradiction
 - \rightarrow Suppose $p_t = p$ for t = 0, 1, 2, ...

$$\max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \log(c_t^i)$$

s.t.
$$\sum_{t=0}^{\infty} pc_t^i = \sum_{t=0}^{\infty} pe_t^i; \lambda$$

$$\Rightarrow \text{ By FOCs, } \lambda = \frac{\beta^t}{c_t^i} = \frac{\beta^{t+1}}{c_{t+1}^i} \Leftrightarrow c_t^i = \beta c_{t-1}^i = \beta^t c_0^i$$

→ By budget constraint,

$$\sum_{t=0}^{\infty} eta^t
ho c_0^i = rac{
ho c_0^i}{(1-eta)} = \sum_{t=0}^{\infty}
ho e_t^i \Leftrightarrow c_0^i = (1-eta) \sum_{t=0}^{\infty} e_t^i$$

>>> Contradiction: HH cannot consume infinite resources in first period

b) Solve ADCE

 \rightarrow Derive Euler equation using household i's first-order conditions

$$c_{t+1}^i = \beta \frac{p_t}{p_{t+1}} c_t^i$$

 \rightarrow Write c_t^i in terms of c_0^i using Euler

$$c_t^i = \beta \frac{p_{t-1}}{p_t} c_{t-1}^i = \beta \frac{p_{t-1}}{p_t} \times \beta \frac{p_{t-2}}{p_{t-1}} c_{t-2}^i = \dots = \beta^t \frac{p_0}{p_t} c_0^i$$

 \rightarrow Normalize $p_0=1$. Write c_0^i in terms of discount factor, prices, and endowments using budget constraint

$$\sum_{t=0}^{\infty} p_t c_t^i = \sum_{t=0}^{\infty} p_t \beta^t \frac{p_0}{p_t} c_0^i = c_0^i \sum_{t=0}^{\infty} \beta^t = \sum_{t=0}^{\infty} p_t e_t^i$$

 \rightarrow Replace c_0^i in equation you wrote earlier for c_t^i

$$c_t^i = (1 - \beta) \frac{\beta^t}{p_t} \sum_{t=0}^{\infty} p_t e_t^i$$

b) Solve ADCE

 \rightarrow Solve p_t using the market-clearing condition

$$c_t^1 + c_t^2 = (1 - \beta) \frac{\beta^t}{\rho_t} \sum_{t=0}^{\infty} \rho_t (e_t^1 + e_t^2)$$
 $2 = 2(1 - \beta) \frac{\beta^t}{\rho_t} \sum_{t=0}^{\infty} \rho_t$
 $\rho_t = \beta^t$

 \rightarrow Solve allocations \hat{c}_t^1 , \hat{c}_t^2 by plugging p_t , endowments in expression for c_t^i (be careful with sums!)

$$\hat{c}_t^i = (1 - \beta) \sum_{t=0}^{\infty} \beta^t e_t^i$$

- ② Prove equivalence of ADCE and SMCE Exercise (optional): Show $1+r_{t+1}=\frac{1}{\beta},\ c_t^1=\frac{2}{1-\beta},\ c_t^2=\frac{2\beta}{1-\beta}$ in SMCE with same preferences, endowments as ADCE in Question 1. SMCE is allocation $\{c_t^1,a_{t+1}^1,c_t^2,a_{t+1}^2\}_{t=0}^\infty$ and interest rate $\{r_{t+1}\}_{t=0}^\infty$ such that
 - A. Given prices, household i = 1, 2 makes allocation that solves

$$\max_{\{c_t^i\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \log c_t^i$$

s.t.
$$c_t^i + a_{t+1}^i = e_t^i + (1+r_t)a_t^i$$

- B. For $t = 0, 1, 2, \ldots$, markets clear
 - i. Consumption good: $c_t^1 + c_t^2 = e_t^1 + e_t^2$
 - ii. Securities: $a_{t+1}^1 + a_{t+1}^2 = 0$

- **9** Prove First Welfare Theorem: Let $\{c_t^1, c_t^2\}_{t=0}^{\infty}$ be CE. Then it is Pareto efficient.
 - Suppose not. If proposition is incorrect, \exists allocation $\{\hat{c}_t^1,\hat{c}_t^2\}_{t=0}^\infty$ such that

i.
$$\sum_{t=0}^{\infty} \beta^t \log(\hat{c}_t^1) > \sum_{t=0}^{\infty} \beta^t \log(c_t^1)$$

ii.
$$\hat{c}_t^1 + \hat{c}_t^2 = 2$$
 for $t = 0, 1, 2, ...$

iii.
$$\sum_{t=0}^{\infty} \beta^t \log(\hat{c}_t^2) = \sum_{t=0}^{\infty} \beta^t \log(c_t^2)$$

Sketch: Find $\{\hat{c}_t^1, \hat{c}_t^2\}_{t=0}^{\infty}$ s.t i. and ii. hold. Use fact that log preferences are **locally non-satiated** and to conclude $\sum_{t=0}^{\infty} \frac{\partial^t \log(\hat{c}^2)}{\partial t} < \sum_{t=0}^{\infty} \frac{\partial^t \log(\hat{c}^2)}{\partial t}$ which finishes the proof

$$\sum_{t=0}^{\infty} \beta^t \log(\hat{c}_t^2) < \sum_{t=0}^{\infty} \beta^t \log(c_t^2), \text{ which finishes the proof.}$$