ECON 8040 - TA Session 2

Michael Kotrous

University of Georgia

September 5, 2023

Today's Session

- * Homework 2 due Friday, September 8, 9:00am
- * TA Session on Friday, September 8, 9:00am, Correll Hall 116
 - → Homework 1 grades

Question 1 – Lecture Notes

- 4) Show allocation is PE ⇔ allocation solves Planner problem
 - \Rightarrow If stuck, look at 6.a for inspiration. How do utilities change in α ?
 - \leftarrow Fix Planner weights α ; prove by contradiction
- 5) Find planner weights make Planner choose CE allocation
 - >>> Find PE allocation that is affordable with zero transfers
- 6) Negishi Method
 - a) Solve Planner allocations as functions of weights $\alpha = (\alpha_1, \alpha_2)$
 - b) Solve for transfers
 - c) Show transfers are HD1 in α and sum to zero
 - d) Solve ADCE prices and allocations
 - Find PE allocation such that transfers equal zero
 - Solve for prices, too!

Question 1 – Lecture Notes

- 7) Stochastic Arrow-Debreu Economy
 - a) Show CE allocation is Pareto efficient
 - b) Suppose $\pi(1) = \pi(2) = 0.5$. Solve ADCE.
- 8) Sequential Markets CE
- 9) Show equivalence of ADCE and SMCE
 - → Look at similar question on HW1

Question 2 – Stochastic Arrow-Debreu Economy

- a) Define AD equilibrium
 - >> 2 consumers maximize expected utility subject to 1 budget constraint
 - \rightarrow 1 time period; 3 possible states of endowments $S = \{s_1, s_2, s_3\}$
 - → Thus, 3 market-clearing conditions
- b) Define Pareto efficient allocation
 - >>> Feasibility constraints
 - What is true of utilitities for consumers for all other feasible allocations?
- c) Show ADCE is Pareto efficient
 - → See proofs of FWT in lecture notes

Question 2 – Stochastic Arrow-Debreu Economy

d) Solve Stochastic ADCE

- \rightarrow WLOG normalize $p(s_1) = 1$
- \rightarrow FOCs wrt 3 choice variables for household i
- >>> Replace prices on LHS of budget constraint
- \rightarrow Write $c^i(s_1)$ in terms of prices, endowments
- \rightarrow Use FOCs to write $c^i(s_2), c^i(s_3)$ in terms of prices, endowments
- \rightarrow Plug $c^{i}(s_{i})$ for i = 1, 2, j = 1, 2, 3 into MCCs to solve prices
 - You'll have 3 equations for 2 unknowns, but solution is unique
- \rightarrow Solve allocations by replacing prices into equations for $c^i(s_j)$ you derived earlier