ECON 8040 - TA14

Michael Kotrous

University of Georgia

December 1, 2023

Today's Session

- ★ Final exam Thursday, December 7, 3:30–6:30 p.m.
- * PS8 and PS9 Grades

- (a) Define SMCE in "Lucas Tree" economy
 - A. HH maximizes utility subject to
 - budget constraint
 - no Ponzi schemes
 - B. Markets clear
 - i. Consumption good: $c_t = d_t$ for t = 0, 1, ...
 - ii. Shares: $s_t = 1$ for t = 0, 1, ...
 - iii. Assets: $b_t = 0$ for t = 0, 1, ...

- (b) Recursive Competitive Equilibrium is collection of price functions $\{p^s(d), p^b(d)\}$, value function $\{V^*(w, d)\}$, and household policy functions $\{c^*(w, d), b^*(w, d), s^*(w, d)\}$ such that
 - A. Given price functions and dividends d and d', household policy functions solve its Bellman equation

$$V(w,d) = \max_{c,b',s'} \{u(c) + \beta V(w',d')\}$$

subject to

$$c+p^b(d)b'+p^s(d)s' \leq w,$$
 $c,s' \geq 0$ $b' > -ar{A}$ for some $ar{A} > 0$

The solution to the Bellman equation is value function $V^*(w, d)$.

B. Price functions are functions of dividends d.

$$p^s = p^s(d)$$

$$p^b = p^b(d)$$

C. Allocation is feasible. That is, household policies satisfy market clearing conditions in aggregate. For all dividends *d*,

$$c(d,d)=d$$

$$b(d,d)=0$$

$$s(d,d)=1$$

- (c) Assume $d_t = 1$ and find p_t^b
 - \rightarrow HH FOCs wrt b_{t+1} , c_t , and c_{t+1}

$$p_t^b = \beta \frac{u'(c_{t+1})}{u'(c_t)}$$

 \mapsto By MCC, $c_t = c_{t+1} = 1$, so

$$p_t^b = \beta$$

- (c) Assume $d_t = 1$ and find p_t^s
 - \rightarrow HH FOCs wrt k_{t+1} , c_t , and c_{t+1}

$$p_t^s = \beta \frac{u'(c_{t+1})}{u'(c_t)} \left(p_{t+1}^s + d_{t+1} \right)$$

 \rightarrow Iterate forward r periods

$$p_t^s = \beta^r p_{t+r}^s + \sum_{k=1}^r \beta^k$$

 \rightarrow Assume no speculative bubble: $\lim_{r\to\infty} \beta^r p_{t+r}^s = 0$

$$p_t^s = \sum_{k=1}^{\infty} \beta^k$$

- (d) Assume $u(c_t) = \log(c_t)$ and $d_t = \begin{cases} 1 & \text{if } t = 0, 2, 4, \dots \\ 2 & \text{if } t = 1, 3, 5, \dots \end{cases}$
 - \rightarrow Solve for p_t^b , p_t^s same as (c)
 - >>> Two prices for bonds, stocks (odd/even periods)

(a) Define SMCE

- \rightarrow Prices, allocations, and policy $\{\tau_c, \tau_k, \tau_n, T_t\}$
- → HH budget constraint
 - Consumption tax adds to expenditure
 - Labor, capital taxes subtract from income
- >>> Firm maximizes profit
- → Government balances budget
 - Issues no debt B_t
 - Makes no expenditures g_t
- → Four markets clear
 - Consumption good: $c_t + x_t = y_t$
 - Asset market also clears

$$u(c_t, 1 - n_t) = \frac{\left(c_t^{\mu} (1 - n_t)^{1 - \mu}\right)^{1 - \sigma}}{1 - \sigma}$$

$$u_c(c_t, 1 - n_t) = \mu \left[c_t^{\mu} (1 - n_t)^{1 - \mu}\right]^{-\sigma} c_t^{\mu - 1} (1 - n_t)^{1 - \mu}$$

$$= \frac{\mu \left[c_t^{\mu} (1 - n_t)^{1 - \mu}\right]^{1 - \sigma}}{c_t}$$

$$u_n(c_t, 1 - n_t) = -(1 - \mu) \left[c_t^{\mu} (1 - n_t)^{1 - \mu}\right]^{-\sigma} c_t^{\mu} (1 - n_t)^{-\mu}$$

$$= \frac{-(1 - \mu) \left[c_t^{\mu} (1 - n_t)^{1 - \mu}\right]^{1 - \sigma}}{1 - n_t}$$

- (b) Write i_{t+1} in terms of taxes and allocations
 - \rightarrow FOC wrt a_{t+1} :

$$1 + i_{t+1} = \frac{\lambda_t}{\lambda_{t+1}}$$

- \rightarrow **Option #1:** Replace λ_t w/ FOC wrt c_t , λ_{t+1} w/ FOC wrt c_{t+1}
- \rightarrow **Option #2:** Replace $\frac{\lambda_t}{\lambda_{t+1}}$ using FOC wrt k_{t+1}

- (c) Write 3 equations characterizing steady state
 - \rightarrow Impose $c_t = c_{t+1}$, $k_t = k_{t+1}$, so on!
 - \rightarrow Euler equation uses FOCs wrt k_{t+1} , c_t , c_{t+1}
 - \rightarrow Aggregate feasibility \neq HH budget constraint
 - \rightarrow MRS uses FOCs wrt n_t , c_t
- (d) Use Euler from (c) to solve $\frac{k}{n}$ in terms of parameters, taxes **only**
- (e) Use equation from (b) to solve i^*
 - \rightarrow **Option #1:** Impose $c_t = c_{t+1}$, $n_t = n_{t+1}$
 - \rightarrow **Option #2:** Plug in $\frac{k}{n}$ from (d)

Growth Rates and Tax Policy

- (a) Define Arrow-Debreu competitive equilibrium.
 - \rightarrowtail Be careful with policy variables (au_c, au_k, g)
- (b) Derive Euler equation of household
 - → FOCs with respect to choice variables
- (c) Find long-run growth rate of the economy: $\frac{c_{t+1}}{c_t}$
- (d) Can government increase growth rate by subsidizing capital? $(au_k < 0)$
- (e) Find optimal tax subsidy that maximizes representative household's welfare.
 - >>> Can be shown mathematically, but trust your intuition, too.

- (a) Write down aggregate feasibility (aggregate or per person variables $k_t \equiv \frac{K_t}{N}$)
- (b) Write down profit maximization problem. Derive formulas for rental rate of capital r_t and wage w_t
- (c) Define SMCE
- (d) Write 3 equations in per-person variables that characterize equilibrium allocations
 - → Euler equation
 - → Aggregate feasibility
 - \rightarrowtail Marginal rate of substitution consumption and leisure
- (e) Find steady state capital-labor ratio $\frac{K}{H}$.
- (f) How does labor income tax τ affect factor prices, capital-to-output ratio, labor supply, and total output?

AKH growth model with human capital accumulation

- (a) Define TDCE
- (b) Assume $\delta_k = \delta_h$. Find $\frac{c_{t+1}}{c_t}$ in terms of parameters and taxes.
- (c) Tax reform human capital investment x_t^h now exempt. Define TDCE.
 - ightarrow Be careful editing government budget and household budget constraint.
- (d) Find growth rates again.
- (e) Holding tax rates fixed, which economy grows faster?

- * Definitely the hardest problem on the problem set
- * So far, we've treated population growth as an exogenous parameter. This model makes population growth *endogenous*.
- ★ References missing on the problem set (actually useful for solving)
 - → Barro, Robert J. and Gary S. Becker. (1989) "Fertility choice in a model of economic growth." *Econometrica* 57(2): 481–501.
 - → Becker, Gary S. and Robert J. Barro. (1988) "A reformulation of the economic theory of fertility." *Quarterly Journal of Economics* 103(1): 1–25.

- (a) Write down aggregate feasibility
 - \rightarrow R inclusive of depreciation, so law of motion of capital has $\delta = 0$
 - >>> Raising children has two forms of cost:
 - Consumption good
 - Time-spent away from work
- (b) Write down planning problem of "head of family" that takes initial population N_0 , capital stock K_0 as given
- (c) Use planner's FOCs to solve for *per capita* consumption c_t and population growth n_t . How do they depend on N_0 , K_0 ?

- (d) Write planner's problem recursively. Denote value function V(K, N). Show that it is a contraction mapping.
 - → Blackwell's sufficient conditions
- (e) Show that $V(K, N) = N^{1+\eta}v(k)$. Write Bellman equation that v(k) solves.
 - $\rightarrow k \equiv \frac{K}{N}$
 - \mapsto Plug in "guess" of V(K,N) into Bellman and rearrange terms
- (f) Show k' is constant and independent of k
 - \rightarrow It's sufficient to write k' in terms of c, n, and parameters
 - \rightarrow You already solved for c, n

Computation Exercise

Matlab installation instructions on eLC

- (a) De-trend planner's problem (population, labor productivity grow)
- (b) Write stationary planner's problem recursively. Determine k^{ss} :
 - → Write Euler equation
 - \rightarrow Impose steady state condition: V'(k) = V'(k')
- (c) Calibrate parameters $(A, \beta, \alpha, \delta)$
- (d) Solve model numerically by VFI
 - >>> Lecture recording, slides, and references in eLC
- (e) Use policy functions to simulate capital, consumption, and output