ECON 8040 - TA12

Michael Kotrous

University of Georgia

November 10, 2023

Today's Session

- ★ PS7 due Friday, November 10
- ⋆ PS8 due Friday, November 17
- ★ Computation Exercise due Thursday, November 30
- ★ PS9 due **Friday, December 1** at 9:00 a.m.
- ★ Final exam Thursday, December 7, 3:30–6:30 p.m.

- (a) Write down planner's problem
 - >>> Carefully write down all choice variables

PS7 Overview

- Business sector aggregate feasibility: output of the business sector can be consumption of business sector good, invested in business capital, or invested in home capital
- → Home-produced consumption good cannot be invested in either form of capital
- (b) Write the Bellman equation
 - >> Carefully write down state and control variables
 - >>> Replace constraints in objective where convenient
 - Don't forget to write down all remaining constraints!

- (c) Write down FOCs and envelope conditions
 - \rightarrowtail If derivatives are too difficult, you may want to adjust the Bellman you wrote down in (b)
- (d) Write equations that characterize the steady state
 - ightarrow Feasibility and first-order conditions in steady state
 - → There should be as many equations as "unknowns." In principle, the system can be solved.

Two nations vary in discount factor β_i .

- (a) Write steady state capital in case of autarky (i.e., no trade). Which country has higher steady-state capital? Does the result make sense?
- (b) Write planner problem when capital can cross borders.
 - → One feasibility constraint
 - \mapsto Find steady state $\frac{c_t^2}{c_t^1}$ and steady state capital in each country.

Given Cobb-Douglas production function, law of capital motion, and three types of preferences u(c, 1-n)

log-constant Frisch elasticity
$$\log c - \psi \frac{n^{1+\frac{1}{\varepsilon}}}{1+\frac{1}{\varepsilon}}$$

$$\log \log c + (1-\phi)\log(1-n)$$

$$\frac{\left(c^{\phi}(1-n)^{1-\phi}\right)^{1-\sigma}}{1-\sigma}$$

For each:

- (a) Write down recursive planning problem and FOCs, envelope conditions
- (b) Characterize steady state allocations in terms of k and n

Economy with distinct consumption and investment goods.

- (a) Write planner's problem and planner's FOCs
 - There are two aggregate feasibility constraints on planner. It may be helpful to think of what market clearing conditions would be in a competitive equilibrium.
- (b) Write planner's problem recursively and take FOCs, envelope conditions.
 - > Carefully write down state and control variables.

Model of endogoneous mortality from Hall and Jones (2007).

- (a) Write down planner's problem
 - \rightarrow Assume discount factor $\beta = 1$
 - >>> Be careful with choice variables, feasibility and law of motion
- (b) Write planner's problem recursively. Does it satisfy Blackwell's sufficient conditions?
 - → What is the state variable? i.e., what does planner need to know at beginning of period to make optimal allocations?
 - >>> Write down feasibility and law of motion constraints

- (c) Show that value function of form vN solves the Bellman. What is v?
- (d) Write down FOC. What is p?
- (e) Use given u(c) and f(h) to find health expenditure share of income, i.e., $s \equiv \frac{ph}{y}$
- (f) Comparative statics: how does s change in parameters, p?

The Lucas Tree. (Maybe) a helpful analogy: Imagine a shipwrecked crew on an island. The only consumption good available to crew is fruit of a tree on the island. Each period t tree produces fruit d_t . Crew member with s_t shares of tree is entitled to $s_t d_t$ fruit, and shares are traded at price p_t^s . Crew can also trade one-period risk-free bonds b_t at price p_t^b . The budget constraint is

$$c_t + p_t^b b_{t+1} + p_t^s (s_{t+1} - s_t) = b_t + s_t d_t$$

(a) Define SMCE. State all allocations and market clearing conditions. Write utility as u(c).

- (b) Write Recursive Competitive Equilibrium.
 - \rightarrow Rewrite budget constraint and use hint that $w \equiv b + s(p^s(d) + d)$
 - → Allocations in (a) are policy functions
 - >>> Prices in (a) are functions of dividends
 - \rightarrow State variables: (w, d)
 - \rightarrow Control variables: (c, s', b')
 - >>> Refer to example in lecture notes

You don't need to do part (b) to solve parts (c) and (d)

Use SMCE definition in (a) to solve stock price p_t^s and bond price p_t^b .

- (c) Assume $d_t = 1$. No utility form provided, just keep utility as u(c)
- (d) Assume $u(c) = \log c$ and $d_t = \begin{cases} 1 & t = 0, 2, 4, \dots \\ 2 & t = 1, 3, 5, \dots \end{cases}$

Sequential markets economy w/ government

- (a) Define SMCE
 - >>> Prices, allocations, and *policy*
 - → HH budget constraint includes taxes and transfers
 - → Firm maximizes profit
 - → Government tax revenues equal lump-sum transfers
 - → Four markets clear

- (b) Write i_{t+1} in terms of taxes, allocations
 - \rightarrow FOC wrt a_{t+1}
- (c) Write 3 equations determining steady state allocations
 - → Euler equation
 - > Aggregate feasibility
 - → MRS consumption / leisure

PS8 Overview

- (d) Write capital-labor ratio as function of taxes, parameters
 - → Use Euler equation
- (e) Find steady state interest rate

Computation Exercise

Matlab installation instructions on eLC

- (a) De-trend planner's problem (population, TFP grow)
- (b) Write stationary planner's problem recursively. Determine k^{ss} :
 - → Write Euler equation
 - \rightarrow Impose steady state condition: V'(k) = V'(k')
- (c) Calibrate parameters $(A, \beta, \alpha, \delta)$
- (d) Solve model numerically by VFI
 - >>> Lecture recording, slides, and references in eLC
- (e) Use policy functions to simulate capital, consumption, and output