ECON 8040 - TA Session 1

Michael Kotrous

University of Georgia

August 25, 2023

Today's Session

- * Course Overview
- * Recommendations
- * Homework 1 due Friday, August 25, 11:59 p.m.
 - >>> Problem 4, Question 4 (in lecture notes) pushed to HW2

Michael Kotrous (UGA)

About the TA Sessions

TA Sessions Each Friday, Correll 116, 9:00 – 10:30 a.m. Rescheduling / cancellations announced on ELC

- ⋆ Attendance optional
- * Solutions for graded homework
- * Give intuition on current assignments
- * As needed, Matlab tutorials
- * Slides to be posted to ELC afterward

Office Hours & Contact Information

Martin Gervais Amos B453 Aug. 17 – Sep. 19 Wednesday, 1:30 – 3:15 p.m. martin.gervais@uga.edu Roozbeh Hosseini Amos B457 Sep. 21 – Dec. 5 Wednesday, 1:30 – 3:15 p.m. roozbeh@uga.edu

Problem Sets & Exams

- ★ Problem Sets (mainly analytical)
- ⋆ Computational Exercises (Matlab)
- ⋆ Midterm Exam, TBD
- ★ Final Exam, Thursday, December 7, 3:30–6:30 p.m.

Homework & Exams

- * Collaboration on problem sets is encouraged, but each student must submit their own work
 - >>> Please name who you worked with on each homework submission
 - → UGA Academic Honesty Policy
 - >> Keep those jeans high and tight, and follow proto
- * Past exams posted in ELC make for good practice questions

- * This course is challenging!
- Students learn at different pace; not understanding every topic is okay!
- * Talk to your peers, Roozbeh, Martin, or me when you are stuck

Mental Health Resources

- ★ Emergency:
 - → Counseling and Psychiatric Services, 706.542.2273 (24/7 support)
 - → Other emergency services
- ⋆ Non-Emergency:
 - >>> Student Care and Outreach, 706.542.7774 or sco@uga.edu
 - → Well-being and prevention programs

Software & Coding

- ★ Install Matlab (required)
 - → Free through UGA
 - → UGA IT installation guide
 - $\rightarrowtail \ \, \text{Computational exercises require Matlab}$
 - → ECON 8050 also requires Matlab
 - → Matlab coding usually tested on macro preliminary exam
- ★ Use LATEX(optional)
 - → 30-min. Tutorial
 - → Online: Overleaf
 - \rightarrow PC: MiKTeX
 - → Mac: BasicTeX
 - >>> Visual Studio Code, LaTeX Workshop extension for writing

10 / 16

Reference Materials

- Martin's and Roozbeh's lecture notes
- Lecture notes by Krueger (Penn), Jones (Minnesota), and others
- * Textbooks (e.g., Ljungqvist and Sargent; Stokey, Lucas, and Prescott) provide technical background information

Problems 1 & 2

Plot time series of U.S. macroeconomic data

- * U.S. Bureau of Economic Analysis (BEA), NIPA tables
- * St. Louis Federal Reserve, Economic Data (FRED)

Constant relative risk aversion (CRRA) utility function

a) It may be helpful to write

$$c_t^{1-\sigma} = \exp(\log(c_t^{1-\sigma}))$$

before applying l'Hôspital's Rule

- b) Plug derivatives into the provided defintion to write the proof
- c) IES is elasticity of consumption with respect to marginal utility, i.e.,

$$\mathsf{IES} \equiv \frac{\% \Delta c}{\% \Delta U'(c)}$$

Constant relative risk aversion (CRRA) utility function

- d) Inada conditions
 - i. strictly increasing
 - ii. strictly concave
 - iii. $\lim_{c\to 0} U'(c) = +\infty$
 - iv. $\lim_{c\to+\infty} U'(c) = 0$
- e) It is equivalent to show marginal rate of substitution for consumption in any two periods is homogenous of degree zero

Constant relative risk aversion (CRRA) utility function

- f) $\{\widetilde{c}_t\}_{t=0}^{\infty}$ must be feasible and optimal. A sketch
 - \rightarrowtail Write down maximization problems that $\{\widetilde{c}_t\}_{t=0}^\infty$, $\{\widehat{c}_t\}_{t=0}^\infty$ solve
 - \rightarrow Use necessary FOCs of two households to characterize $\frac{\widetilde{c}_{t+1}}{\widetilde{c}_t}$, $\frac{\widehat{c}_{t+1}}{\widehat{c}_t}$
 - → Use budget constraints to finish the proof. What do Inada conditions imply about the budget constraints?

First four questions from the lecture notes

- 1.a) Suppose it is true that $p_t = p$ for all t. Try to solve for consumption and arrive to contradiction.
- 1.b) Solve ADCE
 - → Derive Euler equation using household *i*'s first-order conditions
 - \rightarrow Write c_t^i in terms of c_0^i using Euler
 - \rightarrow Write c_0^i in terms of discount factor, prices, and endowments using budget constraint
 - \rightarrow Replace c_0^i in equation you wrote earlier for c_t^i
 - \rightarrow Solve p_t using the market-clearing condition
 - \rightarrow Solve allocations \hat{c}_t^1 , \hat{c}_t^2 by plugging p_t in expression for c_t^i
- 1.c,d) Provide intuition

Homework 1 Overview

- 2) Show [AD \Rightarrow SM]
 - >>> Derive lifetime budget constraint
 - \rightarrow Use $a_{t+1}^i > -\bar{A}$, $r_{t+1} > 0$ to evaluate one limit
 - \rightarrow Define $1 + r_{t+1} \equiv \frac{p_t}{p_{t+1}}$
- 3) Follow sketch provided in the lecture notes
- 4) Save this one for HW2